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1. INTRODUCTION

Standard techniques in the analysis of turbulence include constructing
the spectrum of turbulence. In the last three decades most authors have
produced the spectrum via the calculation of the autocorrelation function,
Tukey (1) or Blackman and Tukey (2). This method disclosed(among other
things)a distinct economy in electronic data processing compared with the
determination of the coefficients of the Fourier series. In fact, the
Fourier transform of the autocorrelation function is the power spectral
density, or in short, the spectrum, e.g., Tennekes and Lumley (3), p. 214.

Later Cooley and Tukey (4) introduced the Fast Fourier Transform (FFT)
by which spectral values are calculated from the amplitudes of the Fourier
series with even less computer time thah is used by the autocorrelation
method. Thus, "canned" programs of the FFT can be found readily on modern
electronic data processing systems while the "old-fashioned" technique via
the autocorrelation function is fading away. Some investigators may
tacitly accept the postulation that the results from the FFT provide a
valid spectrum in the analysis of turbulence. This postulation is examined

in the following study.

It will be demonstrated that the FFT can be utilized for turbulence
analysis but with certain reservations. The main problem is the calcula-

* tion of the slope of the spectrum for a longer data series and the scatter
of the standardized squared amplitudes for the FFT. The latter may produce
outliers which could bias the slope of the spectral density.

It will also be shown that readings of the Gill anemometer (u-v-w).

at one-second time intervals produced features in agreement with turbulence
-- theory.
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Finally, the FFT implies that the turbulence fluctuations can be
superimposed upon the "stationary" profile for simulation studies of Army
missile systems.

2. TURBULENCE AND POWER SPECTRUM

The presence of turbulence requires that the energy E(x) in the
power spectral density of the one-dimensional velocity (e.g., the wind's
u-component) decreases as a function of the (standardized) wave number k:

E(k) = ae2A k -' [1]

This decrease follows the Kolmogorov-Obukhov-Corrsin hypothesis on
isotropic turbulence in the inertial subrange; see Tennekes and Lumley (3),
p. 266, Priestly (5), p. 61, Hinze (6), p. 194, etc. The Kolmogorov
constant a and the dissipation E (here a constant) are of secondary
interest. The reader is referred to the quoted literature for more details
on a and C.

The relationship to the power spectral density Lj is:

k2
L= f Aj (k) dk = E(k) [2]

where the wave number k = J/p and p is the basic period. Computation of
the power spectral density via the autocorrelation function was introduced
by Tukey (1), see also Blackman and Tukey (2) or Panofsky and Brier (7).
Power spectrum and Fourier series are associated by:

L = A2 /202 [31

.th2
the squared standardized amplitude of the j Fourier term; a2 is the
variance.

In double logarithmic coordinates:

tn(L) = const - (5/3)kn k = const - bPn k [41

This is a linear equation with slope b = -5/3. Thus, turbulence is El
different from white noise, a random process, whose spectral characteristic El

FI is:

"tn L const [I]

with fluctuations of Lj produced by random errors. -
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Fig. 1. Power spectrum of the windshear component Au, I-second recordings,
19 Aug 74. Au = u 2 -Ul, level 2 at 9.1 m, level I at 5.5 m, maximum lag

60 seconds.
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Fig. 2. Power spectrum for data of Figure in double 1ogarnthmic
coordinates. Maximum lag 300 seconds.
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Fig. 1 illustrates the power spectrum for Au = u2i-uli where the
u are the one dimensional wind components at level J of a meteorological
twer. The data have been recorded on 19 August 1974 at one-second time
intervals as measured by Gill anemometers (u-v-w), see Gill (8), Drinkrow
(9) or Horst (10), on terrain of Redstone Arsenal, see Stewart (11), at 5.5
and 9.1 m height.

As illustrated by Fig. 1, the power spectrum density is not constant
which excludes white noise as the generating background. A plot of the
spectrum in double logarithmic coordinates (Fig. 2)* with maximum lag m =

300 seconds and calculation of the regression slope reveal that the major
part of the spectral density follows almost a linear decline with slope
b = -1.63 which 1s very close to -5/3.

The scatter of the data points is not too large, but deviations from
the linear slope are found at low and high wave numbers. The deviations
at low wave numbers are well known, e.g., Haugen (12) p.39, p. 169,
Hinze (6) p. 203, Tennekes and Lumley (3) p. 270, Nicholls and Reading (13)
Peterson (14) and others. Therefore, some authors use filters before
turbulence analysis, e.g., Lester (15). The deviation in the region of
high wave numbers may be caused by either nonisotropic turbulence such as
described by Hinze (6) p. 501 or random noise at the low amplitudes L of

the spectrum. Although the smoothed spectrum could have been plotted in
Figure 2, the author selected to plot the unsmoothed spectral density
values to display the scatter.

The computational effort of determining the slope of the regression

line and the scatter of points can be reduced for the power spectrum by
selecting a smaller maximum lag m. Figure 3 exhibits the spectral density
as function of the wave number in double logarithmic coordinates for m =
60. The slope remains at -1.63 but the scatter is smaller than in Figure
2. As expected, the slope is independent of the maximum lag.

3. SPECTRAL DENSITY FROM THE FAST FOURIER TRANSFORM

Cooley and Tukey (4) have introduced the FFT as a technique for the
rapid calculation of amplitudes of the Fourier series by electronic data
processing. Since the power spectral density can be derived from these
amplitudes, the FFT has replaced the Fourier transform of the autocorrela-
tion function in many cases. The user of this substitution must be aware

of some differences between these two analytical tools.

The autocorrelation function normalizes the reference of the phase
angle of the Fourier terms and includes some smoothing of the data series.

* Only a selected number of spectral values have been plotted in Fig. 2

above wave number 60.
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Fig. 3. Power spectrum for data of Figure 1 in double logarithmic co-
ordinates. Maximum lag 60 seconds.

If the data contain "quasi-periodic" waves which appear intermittently,
phase angle differences around r (i.e., 1800) between previous and subsu-
quent waves will lead to the diminutio or extinction of the amplitude A
in contrast to the Fourier transform of the autocorrelation function.
This effect may produce some "outliers" in the spectral density of the FFT.
Since the FFT is performed on the original data, the spectral amplitudes
will also show a larger scatter (see later Figure 6).

The establishment of the power spectrum via the autocorrelation'func-
tion provides for a choice of the maximum lag m which also determines
the basic periods of the analysis. Thus, waves of long length (time cycle)
can be lumped together in the wave number k = 0. As previously discussed,
the slope is independent of the basic period in the spectrum.

In the FFT the basic period is identical with the length of the data
N which also defines the maximum number of terms N/2 or (N-I)/2 whichever
is a whole number. Shortening the length of the basic wave can only be
accomplished by either truncation of the original data series or by
averaging which may suppress waves of small length. Truncation of the
autocorrelation function by selection of the maximum lag m is different.
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Consequently, it is no surprise that the cummulative spectral density

obtained from the Fourier transform of the autocorrelation function and the

FFT for the data of Fig. 2 or 3 exhibit some difference (Fig. 4). A

disparity is not always found.

Fig. 5 exhibits the cumulative power spectral density of the Fourier

transform spectrum and of the FFT for data recorded on 25 Ncvember 1981 at
the AFGL Weather Test Facility at Otis AFB, Cape Cod, Massachusetts,
measured with a Climatronic Wind Mark I System. As illustrated in this

case, the result from the Fourier transform deviates only minimally from

the one obtained by the FFT. Although the wave numbers (1-60) in both
graphs (Fig. 4 and 5) are the same, the wave length (time cycle) is differ-

ent because the data have been taken at 6-second intervals. In short,
some spectra produced by the two tools may differ and others do not.

Fig. 6 provides the individual (squared and standardized) amplitudes
calculated by the FFT for the same data as Fig. 2 and 3. The slope of the
regression line b = -1.63 which is identical with the result from the
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Fig. 6. Spectral density from FFT in double logarithmic coordinates,

19 August 1974 data.
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power spectrum but b was not easily obtained. Spectral values
of wave numbers with k over 400 and below 10 were truncated,which is
equivalent to the application of a bandpass filter.

The weakness of the FFT is the disproportionate weight which high wave
numbers have in the ordinary process of calculation of a regression line by
least square methods and determination of its slope b. As outlined, the
phase angle effect may produce some outliers which also could distort the
value of the slope. Two methods are recommended to minimize the effect of

disproportionate weight and outliers: truncation or median value regres-
sion.

Usually the'truncation points (band pass filter) are not known a
priori. Thus, they cannot be affixed'for electronic data processing
before computation of the regression line is made. An iterative trunca-
tion process is recommended starting with omitting one or two waves at
low wave numbers (k = 1,2) and a multiple of waves with high numbers (e.g.,
for N/2 = 512, omit k=494 through 512). Then the residual variance and
the slope are computed. The residual variance is:

VR = E(Yi-yi) 2/N [6]

where Y is the analytical value of knL from the regression line and Yi
is ZnL I The slope b will stabilize after some iterative steps; vR will
decrease.

The iterative process can be combined with a statistical evaluation
of the slope b from iterative processes j by checking b. against b.
or checking vJ against v . Test methods have been discribed by3

+1

RR+

Anscombe (16) or Anscombe and Tukey (17).

The fitting of a regression line by ordinary least square methods
may not eliminate the biasing effect of outliers, although after some
stabilization of bj and VR excessive deviations IY -y1I could be omitted
and the slope b recalculated. Although a threshold z could be determined
and values IYi -Yil>Iz l could be excluded,the procedure may be elaborate.

A simple but robust method was suggested by Lawson (18) based on the
median.

Lawson recommends the division of data into three sections, determin-
ing the median of yi for the extreme sections, and then calculating the
regression line from the two median values. This process is simple but
may produce an uncertain statistical error. Therefore, for the FFT, this
author suggests more than three sections depending on the data length N.
An equal number of data in these individual sections is not required.
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E.g., sections with a progressive number of data such as k=l-6, 7-18,
19-36, etc. may simultaneously resolve the problem of the excessive weight
for waves with a high number of k. The regression line can be fitted to
these median values. This reduces the somewhat lengthy process of
iteration utilizing the N/2 Fourier coefficients.

It may be of interest to compare vR for the data presented in
Figures 2, 3, and 6 denoted v30 0 , v60, and vFFT respectively. As expected
v60 is smallest, v60 = 0.089. v300 is about 20% higher, v30 0 = 0.108.

VFFT 1 1,284 which is 14 times higher than v60 but it is no surprise after

examination of Figure 6 and comparing it with Figure 3.

In conclusion, the FFT can be uthlized in turbulence analysis with
some reservations and precautions. Furthermore, one-second recordings
by Gill anemometers disclosed features in agreement with the turbulence

hypothesis.

4. THE COMPOSITE WIND PROFILE

The evaluation of the wind effect upon missile systems sometimes
requires a detailed wind profile in the microscale for short time intervals
over the vertical coordinate. Unfortunately, these microscale observations
are available only at special meteorological towers and seldom over 150 m.
Thus, data sets must be prepared by analytical methods for simulation
studies of missile systems. The results from the analysis presented in

the preceding sections, especially in FFT, aid in the construction of
these data sets.

It is well known that the wind profile as a function of altitude can
be written as:

V(h) = V (h) + V (h) [7]

where V represents the "stationary" part and Vt the small scale time

and/or space fluctuations of the wind vector. In most cases, only the
horizontal components are of importance or interest. Design data of the
stationary part have been prepared for profiles of 1, 2 and 10 km by the
author (19) at an earlier time. The author together with Billions (20)
has also developed a methodology to separate the stationary and non-
stationary part from special data measured by Reisig (21). From a power
spectrum analysis of the data described by Essenwanger and Billions (20),
the author could deduce that the fluctuations of the wind measurements in
15-m height intervals over the vertical range of 1 through 20 km were

white noise. In contrast, the present investigations at ground level for
a 4-m height difference reveal turbulence behavior of the Au. Thus,_the
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author postulates from the tentative results that differences of the wind
component in the lowest I or 2 km may follow turbulence structure rather
than white noise, transforming to the latter above that range except in
regions with known turbulence such as clear air turbulence. The study
continues for confirmation of this postulation. We may now compose the
u component for the wind from:

u(h) = u (h) + Au (h) [8]
5

where u (h) denotes the stationary part and:
s k?

Au(h) - E Aj sin (a hJ + a ) [91

'j=kl
S

Here ahj = j2Tr h/H where h is the altitude (h = i,..., H).

In [9] the amplitudes A2 follow the slope b = -5/3, i.e.,

2 Zn(Ak) = B-(5/3) Pnk [101

B is a constant to be explained below. The phase angles 8. are randomly
distributed, i.e., 8 has a rectangular distribution. Theiwaves k < kI
may be considered as part of the stationary profile u (h). The upper
boundary is k 2 <N/2 or k2 < (N-1)/2.

An equivalent formula is valid for the horizontal (rectangular)
v(h) component of the wind.

Formulae [91 and (10] were utilized to simulate the fluctuations of
Au as a function of height (Figure 7). These fluctuations can be super-
imposed upon u (h). This set of data should prove to be better suited

for the evaluation of the small scale w!nd effect than the present
technique of assuming a 95% wind profile and superimposing a 95% gust.

The investigations will continue with determination of numerical

values for B. Theoretically an initial value can be found for k = 1.
Then B = tn(A2 ),but it should be noticed that Ai is not necessarily
identical with the first Fourier term of the FFT as we learn from
Figures 2, 3, and 6.

5. TIME AVERAGES AND DIFFERENCES OF WINDSPEED (MICRO-SCALE)

Common windspeed measurements (such as by ordinary cup anemometers)
may be considered as time averages because of either a slow instrumental
response time or a built-in time integration. In fact, this averaging is
intended for conventional measurements to report a "representative" wind-
speed in synoptic observations. These measurements display a "meso-scale"
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of turbulence which was pre--
4! sented in the preceding sections.

Seldom have attempts been made
to relate the two phenomena,but

_a global evaluation (climatology)

of turbulence as required for
missile systems ts difficult to
establish without this important
link. This short section serves
to offer some solutions from
preliminary data.

5 200

4 _As previously outlined
white noise (a random proress
for a sequence of independent
data) produces a spectrum whose
slope in eqn. [4] appears with
-b~O. Persistence leads to
b < 0. The structure of turbu-
lence is reflected by producing

b = -5/3. Red noise is another050 -2b 0 2.5 5.0 75U CONENT', special form of persistence

Fig. 7. Simulated data based on but the slope in the spectrum

Eqns. [9] and [10]. cannot readily be associated
with a fixed numerical value.
For smoothed data it may be

b < -2 (Essenwanger and Reiter,
22).

The u and v components of the windspeed data measured on 19 August
(see section 2) were subjected to an averaging process of the length 5,
10, 20, and 30 seconds and the spectrum calculated (FFT).

The slope for the u-component at the 5.5 m level appeared as b = -2.8
for the 10-second and -3.6 for the 20-second average. These numerical
values imply a trend toward red noise.

Examination of the first autocorrelation reveals a drop from 0.97
for 1-second data to between 0.5 to 0.6 for the 30-second averages which
indicates a looser connection between individual data of the sets. It is
the structure of the autocorrelation, however, and not the first lag
correlation which determines the link to red noise. As an example the
sequence of the autocorrelation coefficients from lag 0 to lag 10 are
exhibited for 1-second observations and 10-second averages (Table 1).
Red noise requires:

ri =rl [(ri

*
-- | III I I I [" II I, t ,J, ' I
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AT] Table 1. Autocorrelation Function of

SEC u-component and Red Noise Autocorrela-
U0 tion Series

IX

La 1-Sec. Red N. 20-Sec. Red N.

0 1.0 1.0 1.0 1.0

10 1 .974 0.974 .679 .679
2 .936 0.949 .459 .461
3 .900 0.924 .383 .313

X 4 .866 0.900 .272 .212

5 .836 0.877 .151 .144
6 .809 0.854 .103 .098

2 7 .785 0.832 .081 .065

8 .762 0.810 -.026 .045
_ 9 .738 0.789 .028 .031

0.1 0.3 0.5 0.7 1.0 2.0 rn/sc AS 10 .715 0.768 .102 .021

Fig. 8. Average windspeed AS
as function of time interval.

which is identical with a first order Markov chain (Essenwanger, 23). We

notice that the autocorielation coefficients of 1-second data (u-component,
level 5.5 m, 19 Aug. 74) drop more quickly than expected from red noise.
In contrast, the autocorrelation coefficients for the 20-second averages

are in line with expectations from red noise. The exceedance at lags 3
and 4 and the outlier at lag 8 seem to,be associated with the presence of
a quasi-cycle of around 2 minutes during the 40-minutes when the data
sample was taken on 19 Aug. 74.

Table 1 confirms the assumption of a red noise pattern in time

averaged windspeeds. Thus, power spectra of conventional wind measure-
ments could be interpreted as red noise. Reference to 1-second turbulence
structure can then be achieved by determining the constants of eqn. [10]
from the mid range of these spectra from "meso-scale" data rather than
from fitting the first amplitudes (low k) as suggested for micro-scale

turbulence data.

A second behavioral fact must be considered. Figure 8 displays the
"-i average difference of the windspeed AS as a function of the time intervals

AT, where:

AS = [(Uu) 2 + (Av)2V2 [12]

Figure 8 discloses a linear relationship in the time range from

9 p1
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1 to 40 seconds differences with a slope of 0.5. Since the first 30
seconds were of primary interest here, the continuation of the data after
the 40-second time interval is not shown, but it stabilizes at a constant
value for longer time intervals. This result in micro-scale resembles
earlier work by Neumann (24) who has demonstrated with customary wind data
at the "meso-scale" for readings half an hour apart that the relative
variability tends to a constant value as the time interval increases.

If the time structure as disclosed by Fig. 8 is not automatically met
during the derivation of analytical data by eqn. [10],it may be necessary
to find a solution to include the time structure on a vertical scale. This
investigation is continuing.

The results for the 19 Aug 74 data sample were not completely con-
clusive, and further studies on data samples such as the 25 Nov 81 data
will continue. However, one tentative result can be deduced. The numeri-
cal value of the slope in Figure 8 is 0.5. This is the same numerical
value as derived for the windshear relationship for small intervals

(Essenwanger and Reiter, 22,and Essenwanger, 25). Essenwanger and Reiter
(22) could interpret the slope of 0.5 as a mixture between smoothed data
and turbulence fluctuations. If this interpretation can be applied to the
data of Fig. 8, a separation of the "stationary"and"non-statlonary" part
such as required in eqn. [7] is already the solution, and the time interval
relation would implicitly appear.

A C 6. CONCLUSION

The author has shown that the Fast Fourier Transform is a useful
tool in turbulence analysis and the lack of "canned" programs of the
Fourier transform of the autocorrelation function poses no serious problem.
The user is cautioned, however, to be aware of the differences between the
spectra produced by these two techniques.

A data sample procured with the Gill anemometer recorded at one-
second time intervals reflect agreement with the turbulence hypothesis,
(Fig. 2,3).

TLe FFT has the advantage that turbulence data can be readily
expressed as a Fourier series. The amplitude relationship is expressed
by-e~as. i4-df[0J while the phase angles are randomly distributed.
Although a set of phase angles can be constructed from random generators
in electronic data processing, a simple technique would be a substitution
from a set of empirical turbulence data.

The author has given an example of an analytically produced non-
stationary# set of data which could be superimposed on the-"stationaryf

wind profile. These inferred data sets can be established where speecial
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-'tower measurements are not available such as for altitudes beyond tower
measurements and/or for geographic locations without tower measurements.
These composed sets of wind data are better suited than present techniques
for the assessment of the turbulence impact upon effectiveness, instru-
mental or missile sensitivity, and field use of systems such as DAFFR,
Assault Breaker, CSWS, etc. by combining the-stationary'-an4 'on-
stationary'' effect into one data set.
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